China wholesaler China Gear Manufacturer Open Gear Large Diameter Large Module Casting Herringbone Gear hypoid bevel gear

Product Description

Key attributes

Other attributes

Applicable Industries

Manufacturing Plant, Machinery Repair Shops, Energy & Mining

 

Weight (KG)

1650

 

Showroom Location

None

 

Video outgoing-inspection

Provided

 

Machinery Test Report

Provided

 

Marketing Type

Hot Product 2571

 

Warranty of core components

1 Year

 

Core Components

Gear

 

Place of CHINAMFG

ZheJiang , China

 

Condition

New

 

Warranty

1.5 years

 

Shape

Ring Gear

 

Standard or Nonstandard

Nonstandard

 

Tooth Profile

Spur

 

Material

Steel

 

Processing

Casting

 

Pressure Angle

20°

 

Brand Name

HangZhou

 

Product Name

custom large diameter alloy steel spur casting large ring gear

 

Application

Cement kiln

 

Gear Machining

Gear milling

 

Module of Gear:

8-120

 

OD For Gear Wheel:

MAX.13 000 mm

 

Height For CHINAMFG

MAX. 1200 mm

 

Certificate

ISO 9001:2015

 

Tolerance

+/-0.01mm

 

Heat treatment

QT

 

Surface Treatment

Surface Hardening or Carburizing and Quenching

 

Packaging and delivery

Packaging Details

Package for Cement kiln custom large diameter ring gear transmission alloy steel spur casting large ring gear is wooden box and adapts to CHINAMFG transport

 

Port

ZheJiang ,HangZhou or Others

 

Supply Ability

Supply Ability

9000 Ton/Tons per Year

 

OUR WORKSHOPS

 

OUR EQUIPMENTS
Technology Process

Material

Carbon steel,Alloy steel

Structure

Forging,casting

Type of gear

spur gear,helical gear,Planetary Gear

Heat treatment

Quenching and tempering

Process 

forging, rough machining, QT, finish machining

Main equipments

hobbing,CNC machine

Module

up to 200

Precision of gear

Grinding ISO Grade 5-7 & Hobbing ISO Grade 8-9

Inspection

Raw material inspection, UT,physical property test,dimension inspect

Application

Mining machinery, mill, kiln and other equipment

OUR CERTIFICATE
OUR CUSTOMER FEEDBACK
CONTACT 

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industry
Hardness: Hb190-Hb300
Gear Position: External Gear
Manufacturing Method: Cast Gear
Toothed Portion Shape: Spur Gear
Material: Steel
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

herringbone gear

What is the purpose of using herringbone gears in machinery?

Using herringbone gears in machinery serves various purposes and offers several advantages. Here’s a detailed explanation of the purposes and benefits of using herringbone gears:

  • Smooth and Quiet Operation: Herringbone gears are known for their ability to provide smooth and quiet operation. The double helical tooth design cancels out axial and radial forces, minimizing gear vibrations and reducing noise levels during engagement. This makes herringbone gears suitable for applications where noise reduction and smooth operation are essential, such as precision machinery, automotive transmissions, and gearboxes in industrial equipment.
  • High Load Capacity: Herringbone gears have a high load-carrying capacity due to their double helical tooth profile. The opposing helix angles of the gear teeth distribute the load evenly, allowing for efficient power transmission even under heavy loads. This makes herringbone gears suitable for applications that involve high torque requirements and heavy-duty machinery, such as mining equipment, construction machinery, and marine propulsion systems.
  • Bidirectional Power Transmission: Herringbone gears can transmit power in both directions without the need for additional thrust bearings or special mechanisms. The double helical tooth profile cancels out axial thrust forces, eliminating the net axial thrust on the gear shaft. This bidirectional power transmission capability makes herringbone gears suitable for applications where reversible power transfer is required, such as marine propulsion systems, locomotives, and machine tools.
  • High-Speed Applications: Herringbone gears are well-suited for high-speed applications due to their enhanced tooth strength and efficient torque transfer. The double helical tooth design provides increased tooth contact area and improved load distribution, allowing for reliable power transmission at high rotational speeds. This makes herringbone gears suitable for applications such as turbo machinery, power generation equipment, and high-speed gearboxes.
  • Reduced Wear and Improved Durability: The double helical tooth profile of herringbone gears helps to minimize wear and improve gear durability. The opposing helix angles distribute the load evenly across the gear teeth, reducing localized stress concentrations and minimizing the risk of tooth failure. This ensures long service life and reliable operation, making herringbone gears suitable for applications where durability and longevity are critical, such as heavy machinery, industrial equipment, and wind turbine systems.
  • Efficient Power Transmission: Herringbone gears offer efficient power transmission due to their large contact area and overlapping tooth engagement. The double helical tooth profile provides a larger contact ratio compared to spur gears, allowing for a greater number of teeth in contact at any given time. This efficient torque transfer minimizes power losses and improves overall gear system efficiency, making herringbone gears suitable for applications where energy efficiency is a priority, such as automotive transmissions, gearboxes, and power transmission systems.

The purpose of using herringbone gears in machinery is to achieve smooth and quiet operation, handle high loads, enable bidirectional power transmission, accommodate high-speed applications, ensure durability and longevity, and achieve efficient power transmission. These advantages make herringbone gears a preferred choice in various industries and applications where reliable and high-performance gearing solutions are required.

herringbone gear

What are the advantages and disadvantages of using herringbone gears?

Herringbone gears offer several advantages and disadvantages that should be considered when evaluating their suitability for a specific application. Here’s a detailed explanation of the advantages and disadvantages of using herringbone gears:

Advantages of Herringbone Gears:

  • Reduced Friction: The double helical arrangement of the teeth in herringbone gears helps cancel out axial thrust and minimize sliding friction during gear meshing. This results in reduced frictional losses, improving overall efficiency and reducing energy consumption.
  • Smooth Operation: Herringbone gears provide smooth and quiet operation due to their gradual meshing and unmeshing characteristics. The opposing helix angles of the teeth enable smooth tooth engagement, reducing impact and vibrations, and enhancing overall system performance.
  • High Torque Capacity: Herringbone gears have a larger surface area of contact compared to spur gears, allowing them to transmit higher torque loads. This higher torque capacity enables the use of more compact gear designs and reduces the need for additional gear stages, resulting in space and weight savings.
  • Better Load Distribution: The double helical tooth arrangement in herringbone gears distributes the load more evenly across the gear face. This improves load-bearing capabilities, reduces stress concentrations, and enhances gear life and durability.
  • Improved Alignment: Herringbone gears are self-aligning to a certain extent due to their double helical structure. This makes them more forgiving of minor misalignments, simplifying the alignment process during installation and reducing the risk of gear tooth damage.
  • No Axial Thrust: The opposing helix angles of the teeth in herringbone gears cancel out the axial thrust. This eliminates the need for additional thrust bearings or complicated thrust balancing mechanisms, simplifying the overall gear system design.

Disadvantages of Herringbone Gears:

  • Complex Manufacturing: Herringbone gears are more complex to manufacture compared to spur gears. The double helical tooth profile requires precise machining and specialized manufacturing processes, which can increase production costs.
  • Tighter Tolerance Requirements: The double helical tooth profile of herringbone gears requires tight manufacturing tolerances to ensure proper gear meshing and alignment. This may require more stringent quality control measures during production and assembly.
  • Increased Axial Space: Herringbone gears require additional axial space compared to spur gears due to their double helical structure. This can be a constraint in applications with limited axial space availability, requiring careful consideration during system design.
  • Higher Complexity in Gearbox Design: Incorporating herringbone gears into a gearbox design can add complexity to the overall system. The need for proper gear alignment, balancing, and lubrication may require more sophisticated gearbox configurations and maintenance procedures.
  • Specialized Maintenance: Herringbone gears may require specialized maintenance procedures, such as gear tooth inspection, alignment checks, and lubrication. This can involve additional time and effort compared to simpler gear systems.

When considering the use of herringbone gears, it is essential to evaluate the specific requirements of the application, including load capacity, operating conditions, space constraints, and cost considerations. Proper design, manufacturing, and maintenance practices can help leverage the advantages of herringbone gears while mitigating their disadvantages.

herringbone gear

Are there different variations of herringbone gears available?

Yes, there are different variations of herringbone gears available to suit specific application requirements. Here’s a detailed explanation of some of the common variations of herringbone gears:

  • Single- and Double-Sided: Herringbone gears can be classified as single-sided or double-sided based on the number of helical sections. Single-sided herringbone gears have a herringbone tooth profile on one side and a straight tooth profile on the other side. Double-sided herringbone gears have herringbone tooth profiles on both sides. Single-sided herringbone gears are commonly used when axial thrust elimination is not a primary requirement, while double-sided herringbone gears provide superior axial thrust cancellation.
  • Conventional and Low-Backlash: Herringbone gears can also be categorized as conventional or low-backlash based on their tooth design and manufacturing precision. Conventional herringbone gears have standard tooth profiles and may exhibit some level of backlash, which is the slight clearance between the mating teeth. Low-backlash herringbone gears are designed and manufactured with tighter tolerances to minimize or eliminate backlash, resulting in improved precision and reduced vibration.
  • Materials and Coatings: Herringbone gears can be made from various materials depending on the application requirements. Common materials include steel, cast iron, bronze, and non-ferrous alloys. Additionally, surface coatings such as nitriding or carburizing can be applied to enhance the gear’s hardness, wear resistance, and durability. The choice of material and coating depends on factors like load capacity, operating conditions, and cost considerations.
  • Customized Geometries: Herringbone gears can be customized to specific geometries and specifications based on the application requirements. This includes variations in tooth dimensions, helix angles, pressure angles, and gear module (the ratio of the gear’s pitch diameter to the number of teeth). Customized geometries allow herringbone gears to be optimized for specific torque loads, speed ranges, and space constraints.
  • Integrated Components: In some applications, herringbone gears may be integrated with other components to form specialized gear systems. For example, herringbone gears can be combined with planetary gear systems to create herringbone planetary gears, which offer high torque capacity and compact design. These integrated variations provide specific advantages in terms of load distribution, torque transmission, and overall system efficiency.

The choice of herringbone gear variation depends on the specific application requirements, including factors such as torque loads, speed ranges, axial thrust considerations, precision requirements, and space limitations. Manufacturers and engineers can select the most appropriate variation or customize herringbone gears to ensure optimal performance and reliability in their respective applications.

In summary, herringbone gears offer different variations such as single-sided and double-sided configurations, conventional and low-backlash designs, variations in materials and coatings, customized geometries, and integration with other gear systems. These variations allow herringbone gears to be tailored to meet the specific needs of diverse industrial applications.

China wholesaler China Gear Manufacturer Open Gear Large Diameter Large Module Casting Herringbone Gear hypoid bevel gearChina wholesaler China Gear Manufacturer Open Gear Large Diameter Large Module Casting Herringbone Gear hypoid bevel gear
editor by CX 2023-12-25

Tags: